Date of Award:

8-2019

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Chemistry and Biochemistry

Advisor/Chair:

Alexander I. Boldyrev

Co-Advisor/Chair:

David Farrelly

Third Advisor:

Tianbiao Liu

Abstract

Everything in the universe is made up of elements from the periodic table. Each element has its own role that it plays in the formation of things it makes up. For instance, pencil lead is graphite. A series of honeycomb-like structures made up of carbon stacked on top of one another. Carbon’s neighbor to the left, boron doesn’t like to form such stacked honeycomb-like structures. But, what if there was a way to make boron act like carbon so it did like to form such structures? That question is the basis of the electronic transmutation concept presented in this dissertation. Electronic transmutation states that an element, such as boron, can behave structurally like carbon (form stacked honeycomb structures) if you make them valence (outer most) isoelectronic (“iso”- same; “electronic”- electrons), so both would have the same number of outer most electrons. As a result, chemists would have a new tool to aid in the rational design of new materials.

Checksum

eeb94ad844ad52151325547b3bc0fcb3

Share

COinS