Date of Award:

8-2019

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Electrical and Computer Engineering

Advisor/Chair:

Rose Qingyang Hu

Co-Advisor/Chair:

Bedri Cetiner

Third Advisor:

Ryan Davidson

Abstract

Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions.

Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC).

Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model.

In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby.

A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations.

Checksum

b587f4935f1c2ea0443839fd197383f1

Share

COinS