Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Animal, Dairy, and Veterinary Sciences

Committee Chair(s)

Allen J. Young


Allen J. Young


Jong-Su Eun


Dale R. ZoBell


Kenneth L. White


This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportion of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d periods. Treatments were: 1) conventional corn silage (CCS)-based diet without NFFS, 2) CCS-based diet with NFFS, 3) brown midrib corn silage (BMRCS)-based diet without NFFS, and 4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h NDF degradability was greater for BRMCS than CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of DM and nutrients. Digestibility of N, NDF, and ADF tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred with increasing milk yield due to feeding NFFS with the BMRCS-based diets. Yields of milk fat and 3.5% FCM decreased when feeding the BMRCS-based diet, and there was a tendency for an interaction between CS hybrids and NFFS by further decreased milk fat concentration because of feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by corn silage hybrids and NFFS, there was an interaction between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total VFA production and individual molar proportion were not affected by diets. Dietary treatments did not influence ruminal pH profiles except that duration (h/d) of pH < 5.8 decreased when NFFS was fed in CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.




This work made publicly available electronically on November 1, 2010.