Date of Award:


Document Type:


Degree Name:

Doctor of Philosophy (PhD)


Electrical and Computer Engineering

Committee Chair(s)

Rose Qingyang


Rose Qingyang


Don Cripps


Chris Winstead


Zhen Zhang


Haitao Wang


To support emerging applications such as autonomous vehicles and smart homes and to build an intelligent society, the next-generation internet of things (IoT) is calling for up to 50 billion devices connected world wide. Massive devices connection, explosive data circulation, and colossal data processing demand are driving both the industry and academia to explore new solutions.

Uploading this vast amount of data to the cloud center for processing will significantly increase the load on backbone networks and cause relatively long latency to time-sensitive applications. A practical solution is to deploy the computing resource closer to end-users to process the distributed data. Hence, Mobile Edge Computing (MEC) emerged as a promising solution to providing high-speed data processing service with low latency.

However, the implementation of MEC networks is handicapped by various challenges. For one thing, to serve massive IoT devices, dense deployment of edge servers will consume much more energy. For another, uploading sensitive user data through a wireless link intro-duces potential risks, especially for those size-limited IoT devices that cannot implement complicated encryption techniques. This dissertation investigates problems related to Energy Efficiency (EE) and Physical Layer Security (PLS) in MEC-enabled IoT networks and how Non-Orthogonal Multiple Access (NOMA), prediction-based server coordination, and Intelligent Reflecting Surface (IRS) can be used to mitigate them.

Employing a new spectrum access method can help achieve greater speed with less power consumption, therefore increasing system EE. We first investigated NOMA-assisted MEC networks and verified that the EE performance could be significantly improved. Idle servers can consume unnecessary power. Proactive server coordination can help relieve the tension of increased energy consumption in MEC systems. Our next step was to employ advanced machine learning algorithms to predict data workload at the server end and adaptively adjust the system configuration over time, thus reducing the accumulated system cost. We then introduced the PLS to our system and investigated the long-term secure EE performance of the MEC-enabled IoT network with NOMA assistance. It has shown that NOMA can improve both EE and PLS for the network. Finally, we switch from the single antenna scenario to a multiple-input single-output (MISO) system to exploit space diversity and beam forming techniques in mmWave communication. IRS can be used simultaneously to help relieve the pathloss and reconfigure multi-path links. In the final part, we first investigated the secure EE performance of IRS-assisted MISO networks and introduced a friendly jammer to block the eavesdroppers and improve the PLS rate. We then combined the IRS with the NOMA in the MEC network and showed that the IRS can further enhance the system EE.