Date of Award


Degree Type


Degree Name

Master of Science (MS)


Mathematics and Statistics

Committee Chair(s)

Konrad Suprunowicz


Konrad Suprunowicz


The Laplace and finite Fourier sine transforms can be used to solve certain boundary value problems. Also the Laplace transform is a useful took in solving some integral and integrodifferential equations. This report is composed of transform solutions of seventeen such applied problems, while the author's first report is focused towards the theoretical aspect of these transforms.

Several different types of problems are solved in this report. Among these are Bessel's classical differential equation of index n, two electrical circuit problems, a beam problem, a vibrating string problem, a heat flow problem, and a temperature gradient problem.

One of the objectives of this report is to illustrate several operation properties of the Laplace and finite Fourier sine transforms. Therefore, various methods of inverting transforms are employed to provide diversification.