Date of Award


Degree Type


Degree Name

Master of Science (MS)


Civil and Environmental Engineering

Committee Chair(s)

David Stevens


David Stevens


R. Ryan Dupont


Joan McLean


Anthropogenic activity has led to eutrophication in water bodies across the world. This eutrophication promotes blooms, cyanobacteria being among the most notorious bloom organisms. Cyanobacterial blooms (more commonly referred to as harmful algal blooms (HABs)) can devastate an ecosystem. Cyanobacteria are resilient microorganisms that have adapted to survive under a variety of conditions, often outcompeting other phytoplankton. Some species of cyanobacteria produce toxins that ward off predators. These toxins can negatively affect the health of the aquatic life, but also can impact animals and humans that drink or come in contact with these noxious waters. Although cyanotoxin’s effects on humans are not as well researched as the growth, behavior, and ecological niche of cyanobacteria, their health impacts are of large concern. It is important that research to mitigate and understand cyanobacterial blooms and cyanotoxin production continues. This project supports continued research by addressing an approach to collect and summarize published articles that focus on techniques and models to predict cyanobacterial blooms with the goal of understanding what research has been done to promote future work. The following report summarizes 34 articles from 2003 to 2020 that each describe a mechanistic or data driven model developed to predict the occurrence of cyanobacterial blooms or the presence of cyanotoxins in lakes or reservoirs with similar climates to Utah. These articles showed a shift from more mechanistic approaches to more data driven approaches with time. This resulted in a more individualistic approach to modeling, meaning that models are often produced for a single lake or reservoir and are not easily comparable to other models for different systems.