Document Type

Article

Journal/Book Title/Conference

IEEE Trans. on Plasma Sci.

Volume

36

Issue

5

Location

2238-2245

Publication Date

10-2008

DOI

10.1109/TPS.2008.2004226

Abstract

Electron-induced electron yields of high-resistivity, high-yield materials - ceramic polycrystalline aluminum oxide and the polymer polyimide (Kapton HN), - were made by using a low-fluence, pulsed incident electron beam and charge neutralization electron source to minimize charge accumulation. Large changes in energy-dependent total yield curves and yield decay curves were observed, even for incident electron fluences of <3 fC/mm2. The evolution of the electron yield as charge accumulates in the material is modeled in terms of electron re-capture based on an extended Chung-Everhart model of the electron emission spectrum. This model is used to explain anomalies measured in highly insulating, high-yield materials, and to provide a method for determining the limiting yield spectra of uncharged dielectrics. Relevance of these results to spacecraft charging is also discussed.

Share

COinS