All Physics Faculty Publications

Document Type


Journal/Book Title/Conference

Journal of Geophysical Research





Publication Date


First Page


Last Page



On 3 and 5 September 2002 the OH all-sky imager at Platteville, Colorado (40.2°N, 104.7°W), observed small-scale, wavelike patterns (known as ripples), with horizontal wavelengths of ∼9 km and ∼7 km and lifetimes of ∼9 min and ∼15 min, respectively. The Colorado State University sodium lidar at nearby Fort Collins, Colorado (40.6°N, 105°W), also made concurrent observations of temperature and zonal and meridional winds, which allowed us to determine the nature of the ripples observed. Our observations suggest that the 3 September ripple was induced by a convective instability located at 87.5 km and the 5 September ripple was induced by a dynamic instability at 88.5 km. The ripples clearly advected as packets with the background wind. Lidar measurements also allowed us to relate the directions of wind shear to the phase front alignments of both the ripples and the nearby short-period atmospheric gravity waves. These spatial relationships provided a meaningful comparison with previously observed ripples as well as with current theoretical models. Using the 16-hour continuous lidar data set for each case, we deduced that long-period waves created an unusually large temperature perturbation at the ripple times on 3 September and an unusually large wind shear perturbation on 5 September. These perturbations prepared the background atmosphere to be near the verge of local instability, but, as revealed again by lidar observation, it was the superposition of smaller-scale perturbations at the time of the ripples that helped to actually reach the conditions required for instability and generation of the ripples.


Published by American Geophysical Union in the Journal of Geophysical Research. Publisher PDF is available for download through link above.

Included in

Physics Commons