Document Type

Article

Journal/Book Title/Conference

Meteorological Applications

Volume

27

Issue

1

Publisher

John Wiley & Sons Ltd.

Publication Date

2-13-2020

First Page

1

Last Page

13

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

The active phase of the East Asian summer monsoon (EASM) in Taiwan during May and June, known as Meiyu, produces substantial precipitation for water uses in all sectors of society. Following a companion study that analysed the historical increase in the Meiyu precipitation, the present study conducted model evaluation and diagnosis based on the EASM lifecycle over Taiwan. Higher and lower skill groups were identified from 17 Couple Model Intercomparison Project Phase 5 (CMIP5) models, with five models in each group. Despite the difference in model performance, both groups projected a substantial increase in the Meiyu precipitation over Taiwan. In the higher skill group, weak circulation changes and reduced low‐level convergence point to a synoptically unfavourable condition for precipitation. In the lower skill group, intensified low‐level southwesterly winds associated with a deepened upper level trough enhance moisture pooling. Thus, the projected increase in Meiyu precipitation will likely occur through the combined effects of (1) the extension of a strengthened North Pacific anticyclone enhancing southwesterlies; and (2) more systematically, the Clausius–Clapeyron relationship that increases precipitation intensity in a warmer climate. The overall increase in the Meiyu precipitation projected by climate models of variable performance supports the observed tendency toward more intense rainfall in Taiwan and puts its early June 2017 extreme precipitation events into perspective.

Share

COinS