Mechanisms Underlying the Effects of Unsignaled, Delayed Reinforcement on Key Pecking of Pigeons Under Variable-Interval Schedules

Document Type


Journal/Book Title/Conference

Journal of the Experimental Analysis of Behavior






Society for the Experimental Analysis of Behavior

Publication Date


First Page


Last Page



Three experiments were conducted to test an interpretation of the response-rate-reducing effects of unsignaled nonresetting delays to reinforcement in pigeons. According to this interpretation, rates of key pecking decrease under these conditions because key pecks alternate with hopper-observing behavior. In Experiment 1, 4 pigeons pecked a food key that raised the hopper provided that pecks on a different variable-interval-schedule key met the requirements of a variable-interval 60-s schedule. The stimuli associated with the availability of the hopper (i.e., houselight and keylight off, food key illuminated, feedback following food-key pecks) were gradually removed across phases while the dependent relation between hopper availability and variable-interval-schedule key pecks was maintained. Rates of pecking the variable-interval-schedule key decreased to low levels and rates of foodkey pecks increased when variable-interval-schedule key pecks did not produce hopper-correlated stimuli. In Experiment 2, pigeons initially pecked a single key under a variable-interval 60-s schedule. Then the dependent relation between hopper presentation and key pecks was eliminated by arranging a variable-time 60-s schedule. When rates of pecking had decreased to low levels, conditions were changed so that pecks during the final 5 s of each interval changed the keylight color from green to amber. When pecking produced these hopper-correlated stimuli, pecking occurred at high rates, despite the absence of a peck-food dependency. When peck-produced changes in keylight color were uncorrelated with food, rates of pecking fell to low levels. In Experiment 3, details (obtained delays, interresponse-time distributions, eating times) of the transition from high to low response rates produced by the introduction of a 3-s unsignaled delay were tracked from session to session in 3 pigeons that had been initially trained to peck under a conventional variable-interval 60-s schedule. Decreases in response rates soon after the transition to delayed reinforcement were accompanied by decreases in eating times and alterations in interresponse-time distributions. As response rates decreased and became stable, eating times increased and their variability decreased. These findings support an interpretation of the effects of delayed reinforcement that emphasizes the importance of hopper-observing behavior.