CASPAR Low-Cost, Dual-Manifest Payload Adapter for Minotaur IV

Joseph Maly, CSA Engineering
Scott Pendleton, CSA Engineering
Steven Buckley, AFRL, Space Vehicles Directorate
John Higgins, AFRL, Space Vehicles Directorate
Eric Walsh, ATK Space Systems
Ryan Hevner, Planetary Systems Corporation
Scott Schoneman, Orbital Sciences Corporation
Lt. William Emmer, SMC Det 12/RPS

Abstract

The Minotaur IV Launch Vehicle is being developed by the Air Force Rocket Systems Launch Program (RSLP) to utilize excess Peacekeeper missile motors and provide low-cost launches for Government payloads to Low Earth Orbit (LEO). This vehicle uses three Peacekeeper stages, an Orion 38 motor, and avionics from the heritage Minotaur I vehicle. Nominal capability for Minotaur IV is almost 4000 lbm to LEO. The fly-away cost is just over $20 million. The Composite Adapter for Shared PAyload Rides (CASPAR) Multi-Payload Adapter (MPA) will enable a Minotaur IV to launch two large satellites (1000-2000 lbm) for about $10 million each. The CASPAR MPA is being designed for projected Minotaur IV launch load environments, with design objectives of light weight, integrated vibration isolation, low shock, and modularity. An innovative composite design, including co-cured composite stiffening, provides a lightweight structure with optional access doors. Low-shock separation systems are integrated for MPA and satellite separation events. Vibration isolation systems protect the payloads from the dynamic environment of the Peacekeeper motor stack, and isolation tuning will enable a range of payloads and facilitate modular designs. Qualification testing of a full-scale adapter is planned for early 2006. Design variations are being considered for existing and new launch vehicles.

 
Aug 11th, 9:45 AM

CASPAR Low-Cost, Dual-Manifest Payload Adapter for Minotaur IV

The Minotaur IV Launch Vehicle is being developed by the Air Force Rocket Systems Launch Program (RSLP) to utilize excess Peacekeeper missile motors and provide low-cost launches for Government payloads to Low Earth Orbit (LEO). This vehicle uses three Peacekeeper stages, an Orion 38 motor, and avionics from the heritage Minotaur I vehicle. Nominal capability for Minotaur IV is almost 4000 lbm to LEO. The fly-away cost is just over $20 million. The Composite Adapter for Shared PAyload Rides (CASPAR) Multi-Payload Adapter (MPA) will enable a Minotaur IV to launch two large satellites (1000-2000 lbm) for about $10 million each. The CASPAR MPA is being designed for projected Minotaur IV launch load environments, with design objectives of light weight, integrated vibration isolation, low shock, and modularity. An innovative composite design, including co-cured composite stiffening, provides a lightweight structure with optional access doors. Low-shock separation systems are integrated for MPA and satellite separation events. Vibration isolation systems protect the payloads from the dynamic environment of the Peacekeeper motor stack, and isolation tuning will enable a range of payloads and facilitate modular designs. Qualification testing of a full-scale adapter is planned for early 2006. Design variations are being considered for existing and new launch vehicles.