Session

Technical Session III: Tidbits

Abstract

It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The Dutch space-born radio telescope project OLFAR, the Orbiting Low Frequency Array, is a good example of a typical “swarm-task”. The OLFAR radio telescope will be composed of an antenna array based on nano-satellites orbiting the moon to shield the receiving nodes from terrestrial interference. The array will receive frequencies in a band from around 30 kHz to 30 MHz. This frequency band is scientifically very interesting, since it will be able to detect signals originating from the yet unseen “Dark Ages” ranging from the Big Bang until around 400 million year after. Another science driver is the LF activity from (exo) planets. In this paper the design parameters for the satellites and the swarm will be given and status of the OLFAR project will be reported. Details will be given about the antenna system, the LF-receiver and the signals that are expected.

SSC10-III-6.pdf (606 kB)
Presentation Slides

Share

COinS
 
Aug 10th, 10:00 AM

Olfar, A Radio Telescope Based on Nano-Satellites in Moon Orbit

It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The Dutch space-born radio telescope project OLFAR, the Orbiting Low Frequency Array, is a good example of a typical “swarm-task”. The OLFAR radio telescope will be composed of an antenna array based on nano-satellites orbiting the moon to shield the receiving nodes from terrestrial interference. The array will receive frequencies in a band from around 30 kHz to 30 MHz. This frequency band is scientifically very interesting, since it will be able to detect signals originating from the yet unseen “Dark Ages” ranging from the Big Bang until around 400 million year after. Another science driver is the LF activity from (exo) planets. In this paper the design parameters for the satellites and the swarm will be given and status of the OLFAR project will be reported. Details will be given about the antenna system, the LF-receiver and the signals that are expected.