Session

Session 2: Next on the Pad

Abstract

Three MIT Lincoln Laboratory nanosatellite missions flying microwave radiometers for high-resolution atmospheric sensing are in varying stages of development. Microwave instrumentation is particularly well suited for implementation on a very small satellite, as the sensor requirements for power, pointing, and spatial resolution (aperture size) can be accommodated by a nanosatellite platform. The Microsized Microwave Atmospheric Satellite Version 2a (MicroMAS-2a), launched on January 11, 2018 and has demonstrated temperature sounding using channels near 118 GHz and humidity sounding using channels near 183 GHz. A second MicroMAS-2 flight unit (MicroMAS-2b) will be launched in Fall 2018 as part of ELANA-XX. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA in 2016 as part of the Earth Venture–Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate of approximately 40 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using three channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. TROPICS flight hardware development is on track for a 2019 delivery. Finally, the Earth Observing Nanosatellite-Microwave (EON-MW) mission is being formulated by MIT Lincoln Laboratory for NOAA as part of the Polar Follow-On (PFO) Program’s 2017 budget request. PFO plans to extend JPSS for two more missions and provides a means to mitigate the risk of a gap in continuity of weather observations. The PFO request aims to achieve robustness in the polar satellite system to ensure continuity of NOAA’s polar-orbiting weather observations. The baseline EON-MW design accommodates a scanning 22-channel, high-resolution microwave spectrometer on a 12U CubeSat platform to provide data continuity with the existing AMSU and ATMS microwave sounding systems. EON-MW will nominally be launched into a sun-synchronous orbit for a two to three year mitigation mission in 2021 that will also demonstrate advanced miniaturized microwave sounder technology that expands on the capabilities developed for MicroMAS-2 and TROPICS.

Share

COinS
 
Aug 6th, 5:30 PM

New Capabilities for All-Weather Microwave Atmospheric Sensing Using CubeSats and Constellations

Three MIT Lincoln Laboratory nanosatellite missions flying microwave radiometers for high-resolution atmospheric sensing are in varying stages of development. Microwave instrumentation is particularly well suited for implementation on a very small satellite, as the sensor requirements for power, pointing, and spatial resolution (aperture size) can be accommodated by a nanosatellite platform. The Microsized Microwave Atmospheric Satellite Version 2a (MicroMAS-2a), launched on January 11, 2018 and has demonstrated temperature sounding using channels near 118 GHz and humidity sounding using channels near 183 GHz. A second MicroMAS-2 flight unit (MicroMAS-2b) will be launched in Fall 2018 as part of ELANA-XX. The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA in 2016 as part of the Earth Venture–Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate of approximately 40 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises a constellation of six CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using three channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. TROPICS flight hardware development is on track for a 2019 delivery. Finally, the Earth Observing Nanosatellite-Microwave (EON-MW) mission is being formulated by MIT Lincoln Laboratory for NOAA as part of the Polar Follow-On (PFO) Program’s 2017 budget request. PFO plans to extend JPSS for two more missions and provides a means to mitigate the risk of a gap in continuity of weather observations. The PFO request aims to achieve robustness in the polar satellite system to ensure continuity of NOAA’s polar-orbiting weather observations. The baseline EON-MW design accommodates a scanning 22-channel, high-resolution microwave spectrometer on a 12U CubeSat platform to provide data continuity with the existing AMSU and ATMS microwave sounding systems. EON-MW will nominally be launched into a sun-synchronous orbit for a two to three year mitigation mission in 2021 that will also demonstrate advanced miniaturized microwave sounder technology that expands on the capabilities developed for MicroMAS-2 and TROPICS.