Document Type


Journal/Book Title

Frontiers in Environmental Science

Publication Date






First Page


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Last Page



In the face of climate change, achieving resilience of desirable aspects of food-energy-water (FEW) systems already strained by competing multi-scalar social objectives requires interdisciplinary approaches. This study is part of a larger effort exploring “Innovations in the Food-Energy-Water Nexus (INFEWS)” in the Columbia River Basin (CRB) through coordinated modeling and simulated management scenarios. Here, we focus on a case study and conceptual mapping of the Yakima River Basin (YRB), a sub-basin of the CRB. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic and governance systems); however, more attention to social drivers and outcomes is needed. Our goals are to identify several underutilized ways to incorporate social science perspectives into FEW nexus research and to explore how this interdisciplinary endeavor alters how we assess innovations and resilience in FEW systems. First, we investigate insights on FEW nexus resilience from the social sciences. Next, we delineate strategies for further incorporation of social considerations into FEW nexus research, including the use of social science perspectives and frameworks such as socio-ecological resilience and community capitals. Then, we examine a case study of the YRB, focusing on the historical development of the FEW nexus and innovations. We find that a resilience focus applied to the FEW nexus can inadvertently emphasize a status quo imposed by those already in power. Incorporating perspectives from the social sciences, which highlight issues related to inequality, power, and social justice, can address these shortcomings and inform future innovations. Finally, we use causal loop diagrams to explore the role of the social in the FEW nexus, and we suggest ways to incorporate social aspects into an existing stock and flow object-oriented modeling system. This project represents a starting point for a continued research agenda that incorporates social dynamics into FEW system resilience modeling and management in the CRB.