Alluvial Sedimentation and Erosion in an Urbanizing Watershed,Gwynn Falls, Maryland

Document Type


Journal/Book Title/Conference

J. American Water Resources Association





Publication Date



Alluvial Sedimentation, erosion, urbanizing watershed, Gwynn Falls, Maryland

First Page


Last Page



Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987-2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine-grained sediment and experienced some reduction in cross-sectional area, primarily through the deposition of fine-grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross-sectional area as a consequence of the evacuation of in-channel fine-grained sediment. Fine-grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross-sectional area and a strong decrease in channel width variation. Channel cross-sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2-year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub-basin impervious cover or watershed area. In-channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.

This document is currently not available here.