•  
  •  
 

Scanning Electron Microscopy

Abstract

The performance of a new high resolution scanning ion microprobe (SIM) is elucidated with regard to imaging capabilities using the ion-induced secondary electron (ISE) or secondary ion (ISI) signals, and the mass-resolved signal from a secondary ion mass spectrometry (SIMS) system. The new instrument focuses a beam extracted from a liquid metal ion source (LMIS) to a range of spot sizes reaching the 20 nm level. The probe current (1.6 pA) available at this level of lateral resolution, which approaches the theoretical resolution limits of the SIMS method, is still adequate to obtain detailed isotopic maps for surfaces rich in the elements of low ionization potential (positive ISI), or high electron affinity (negative ISI). In addition to examples of high resolution ISE and ISI images of objects displaying sufficiently small topographic detail, mass spectra and isotopic maps are shown, testing both the lateral and depth resolution attained. The latter results belong with a program of interdisciplinary research applications of the new microprobe, which include studies of e.g., the monolayer lateral distribution of intercalant in SbCl5 intercalated graphite and of silicate minerals and iron distribution in sections of chondrules and their rims (components of chondrites, a class of stoney meteorites). In the biomedical field, the new microprobe finds application in e.g., the study of human renal calculi and bone. Most promising is the use of stable isotope tracers (e.g., Ca44) to unravel the dynamics of bone mineralization, as thus far shown with the in-vitro culture of the skull bone of neonatal mice.

Included in

Biology Commons

Share

COinS