•  
  •  
 

Scanning Microscopy

Abstract

The fundamental structure formed when genomic DNA is packaged by protamine in the human sperm nucleus still remains essentially unresolved. It is known that the binding of protamine, a small arginine-rich protein, to DNA generates a large dense, hydrophobic complex making the sperm chromatin structure difficult to study microscopically. To visualize the internal nuclear structures, isolated human sperm nuclei were swollen extensively in saline buffer using only a reducing agent. The nuclei were swollen during deposition onto coverglass and then imaged in the atomic force microscope (AFM). The two main results obtained from imaging individual well-spread nuclei indicate that native human sperm chromatin is: (1) particulate, consisting primarily of large nodular structures averaging 98 nm in diameter, and (2) also composed of smaller, nucleosome-like particles observed to form linear chains near the nuclear periphery. These two types of chromatin particles imaged by AFM are remarkably similar to other AFM measurements made on native and reconstituted sperm and somatic chromatin.

Included in

Biology Commons

Share

COinS