Scanning Microscopy
Abstract
Scanning electron microscopy (SEM) has had a shorter time course in biology than conventional transmission electron microscopy (TEM) but has nevertheless produced a wealth of images that have significantly complemented our perception of biological structure and function from TEM information. By its nature, SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by the considerably reduced resolution in conventional SEM in comparison to TEM. This restriction has been removed by the recent advent of high-brightness sources used in lensfield emission instruments (FEISEM) which have produced resolution of around 1 nanometre, which is not usually a limiting figure for biological material.
This communication reviews our findings in the use of FEISEM in the imaging of nuclear surfaces, then associated structures, such as nuclear pore complexes, and the relationships of these structures with cytoplasmic and nucleoplasmic elements. High resolution SEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance. Clearly, intracellular surfaces require separation from surrounding structural elements in vivo to allow surface imaging, and we review a combination of biochemical and mechanical isolation methods for nuclear surfaces.
Recommended Citation
Allen, T. D.; Bennion, G. R.; Rutherford, S. A.; Reipert, S.; Ramalho, A.; Kiseleva, E.; and Goldberg, M. W.
(1996)
"Accessing Nuclear Structure for Field Emission, in Lens, Scanning Electron Microscopy (FEISEM),"
Scanning Microscopy: Vol. 1996:
No.
10, Article 12.
Available at:
https://digitalcommons.usu.edu/microscopy/vol1996/iss10/12