•  
  •  
 

Scanning Microscopy

Abstract

Contributing to the rapidly developing field of immunoelectron microscopy a new kind of markers has been created. The element boron, incorporated as very stable carborane clusters into different kinds of peptides, served as a marker detectable by electron spectroscopic imaging (ESI) - an electron microscopic technique with high-resolution potential.

Covalently linked immunoreagents conspicuous by the small size of both antigen recognizing part and marker moiety are accessible by using peptide concepts for label construction and their conjugation with Fab' fragments. Due to a specific labeling of the free thiol groups of the Fab' fragments, the antigen binding capacity was not affected by the attachment of the markers and the resulting immunoprobes exhibited an elongated shape with the antigen combining site and the label located at opposite ends. The labeling densities observed with these reagents were found to be significantly higher than those obtained by using conventional colloidal gold methods.

Combined with digital image processing and analysis systems, boron-based ESI proved to be a powerful approach in ultrastructural immunocytochemistry employing pre-and post-embedding methods.

Included in

Biology Commons

Share

COinS