Scanning Microscopy
Abstract
Although cataract of the eye lens is a known late effect of ionizing radiation exposure, most of the experimental work to date has concentrated on single, acute high doses or multiple, fractionated, chronic exposures. Many papers have dealt with biochemical alterations in metabolism and cellular components, with microscopic and electron microscopic lesions to the epithelial and cortical layers, and with clinical cataract formation. However, the minimum cataractogenic dose for rats has for many years been considered to be about 2 Gy for a single, acute dose of low LET radiation.
Our purpose in designing this pilot study was three fold: firstly, to determine whether any physical damage could be detected after low, acute exposure to neutron radiation (10 and 100 cGy); secondly, to compare the relative effectiveness of fast (14 MeV) neutrons with gamma-rays; and thirdly, to investigate the possibility that vitamin E could protect the lenses from radiation damage.
The results revealed that morphological damage was already discernible within minutes after exposure to neutrons or gamma-rays, that it became greater after 24 hours, that neutrons were more damaging than gamma-rays, and that vitamin E could effectively reduce the cataractogenic damage induced by ionizing radiation. Control, non-irradiated lenses with or without vitamin E, either in vivo or in vitro, showed no damage. Also, it appeared that in vitro irradiation was more damaging to lenses than in vivo irradiation, so this culture technique may prove to be a sensitive tool for assessing early damage caused by ionizing radiation. However it must be noted that at this level of radiation exposure (10-100 cGy), the early damage we have described will probably be repaired so no clinical cataracts will develop, unless other factors contribute to their development.
Recommended Citation
Ross, W. M.; Creighton, M. O.; and Trevithick, J. R.
(1990)
"Radiation Cataractogenesis Induced by Neutron or Gamma Irradiation in the Rat Lens is Reduced by Vitamin E,"
Scanning Microscopy: Vol. 4:
No.
3, Article 13.
Available at:
https://digitalcommons.usu.edu/microscopy/vol4/iss3/13