Description
Simulations are becoming increasingly popular in science and engineering. One type of simulation is Computation Fluid Dynamics (CFD) that is used when closed forms solutions are impractical. The field of Verification & Validation emerged from the need to assess simulation accuracy as they often contain approximations and calibrations.
Validation involves the comparison of experimental data with simulation outputs and is the focus of this work. Errors in simulation predictions may be assessed in this way. Validation requires highly-detailed data and description to accompany these data, and uncertainties are very important.
The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD simulations. This aim is fundamentally different from the typical discovery experiments common in research. The measurement of these physics was not necessarily original but performed with modern, high fidelity methods. Data were tabulated through an online database for direct use in Reynolds-Averaged Navier Stokes simulations. Detailed instrumentation and documentation were used to make the data more useful for validation. This work fills the validation data gap for steady and transient mixed convection.
The physics in this study included mixed convection on a vertical flat plate. Mixed convection is a condition where both forced and natural convection influence fluid momentum and heat transfer phenomena. Flow was forced over a vertical flat plate in a facility built for validation experiments. Thermal and velocity data were acquired for steady and transient flow conditions. The steady case included both buoyancy-aided and buoyancy-opposed mixed convection while the transient case was for buoyancy-opposed flow. The transient was a ramp-down flow transient, and results were ensemble-averaged for improved statistics. Uncertainty quantification was performed on all results with bias and random sources.
An independent method of measuring heat flux was devised to assess the accuracy of commercial heat flux sensors used in the heated wall. It measured the convective heat flux by the temperature gradient in air very near the plate surface. Its accuracy was assessed by error estimations and uncertainty quantification.
OCLC
985526239
Document Type
Dataset
DCMI Type
Dataset
File Format
.csv, .pdf
Publication Date
2015
Publisher
Utah State University
Referenced by
Lance, Blake W., "Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate" (2015). All Graduate Theses and Dissertations. 8094. https://digitalcommons.usu.edu/etd/8094
Language
eng
Disciplines
Mechanical Engineering
License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Lance, B. W. (2015). Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate. Utah State University. https://doi.org/10.15142/T39W2V
Checksum
8ba65085839bc957d396fac468f0df4c
Previous Versions
Sep 22 2015 (withdrawn)
Additional Files
Data.zip (13053 kB)MD5: 0206abc512b00edfd182e3c30988678b
Aid-BC-AtmCond.csv (1 kB)
MD5: d4db291e275912d746eca81b9cfb13cd
Aid-BC-HeatedWallTemp.csv (7 kB)
MD5: 5395739959ed9d4af353d8abdeddef98
Aid-BC-InletTemp.csv (1 kB)
MD5: 44387a1b86698be28256022ea987bbe6
Aid-BC-Inlet-Vel.csv (270 kB)
MD5: c4388b1857a7273be3c0d7d3b81a2c53
Aid-BC-LeftWallTemp.csv (1 kB)
MD5: 5065ed2943a7005e7345051664f7ed4d
Aid-BC-RightWallTemp.csv (1 kB)
MD5: a5107835afb25b406dae12bdf81a1fa8
Aid-BC-TopWallTemp.csv (1 kB)
MD5: 5618c9b22c86dc70d6a3dade0f85105f
Aid-SRQ-HeatFlux.csv (1 kB)
MD5: 950ec2d3f17a6fd9f7d76fb79edd9d5d
Aid-SRQ-Shear.csv (1 kB)
MD5: 829707f025c8babaa2b84fb293e100bf
Aid-SRQ-Vel_x1.csv (23 kB)
MD5: 97795300beef4fe1fde3e3a528e6bef2
Aid-SRQ-Vel_x2.csv (24 kB)
MD5: 6aa88863799c5e8288c0386721437c0f
Aid-SRQ-Vel_x3.csv (24 kB)
MD5: e17da18caf8af5ea9fe884913916ca6d
All-BC-AsBuiltGeometry.x_t (17 kB)
MD5: 94ac31986038afdbe9a2ef57cd52ce18
All-BC-AsBuiltMeasurements.csv (1 kB)
MD5: 19e2a1b1a18a8cc2388ca35e759f353
All-BC-AsBuiltMeasurementUncertainties.csv (1 kB)
MD5: 2fa46d6cf2a4e6378c489ee558870baa
All-BC-AsBuiltSketch.pdf (53 kB)
MD5: 723a2552139579c5d5649c4b3bc8dce7
Opp-BC-AtmCond.csv (1 kB)
MD5: cf1b1cf8ef68497e75436e1d1a4734ef
Opp-BC-HeatedWallTemp.csv (7 kB)
MD5: 6549cb44fb169c8f0d0cba2e80f212a3
Opp-BC-InletTemp.csv (1 kB)
MD5: cf12cb665e80713679a1eb1c60d3d90e
Opp-BC-Inlet-Vel.csv (482 kB)
MD5: b584c87854817bbf8358668af520414c
Opp-BC-LeftWallTemp.csv (1 kB)
MD5: 3553a3e3d0cd504028135539070ab697
Opp-BC-RightWallTemp.csv (1 kB)
MD5: ae6a9bc9fc3dda4044acae272808e2da
Opp-BC-TopWallTemp.csv (1 kB)
MD5: f86ea65a58f21492d922110fc961492f
Opp-SRQ-HeatFlux.csv (1 kB)
MD5: bc4a431406e84dfa3df9518bda710d6d
Opp-SRQ-Shear.csv (1 kB)
MD5: fb72659f2030794999d58ba1c19d1711
Opp-SRQ-T_x1.csv (1 kB)
MD5: 10a5e9e3ab1cf39ecdeb14a4089dec09
Opp-SRQ-T_x2.csv (1 kB)
MD5: c0ed298d83fa491773facc49553a7a75
Opp-SRQ-T_x3.csv (1 kB)
MD5: 9d02e05d8269bedd884aa0e9b91821fd
Opp-SRQ-Vel_x1.csv (46 kB)
MD5: f63ec42318bc94e6d1179d0f03aa0025
Opp-SRQ-Vel_x2.csv (43 kB)
MD5: 2c100ed694cbdfce4c59372840b2784f
Opp-SRQ-Vel_x3.csv (43 kB)
MD5: 47299e52fcab89983b6e6117160df49c
Trans-BC-AtmCond.csv (1 kB)
MD5: be299ae7cc7631e28733fbeb7cef0b24
Trans-BC-HeatedWallTemp.csv (438 kB)
MD5: 6b8d73fc44e0262b08752e6f5c76dd9f
Trans-BC-InletTemp.csv (38 kB)
MD5: b7d9a04cf7519936a16fbd0624f046a2
Trans-BC-Inlet-Vel.csv (22234 kB)
MD5: 439b353901831c8c348eb0d89a93cb09
Trans-BC-LeftWallTemp.csv (45 kB)
MD5: 7471478403386e880fbdbdcf08c47c19
Trans-BC-RightWallTemp.csv (44 kB)
MD5: c4fcc0006bdc63edeb52977849f974f3
Trans-BC-TopWallTemp.csv (44 kB)
MD5: d3559f9e39cce9e7ddd7e0b766001274
Trans-SRQ-HeatFlux.csv (14 kB)
MD5: d3559f9e39cce9e7ddd7e0b766001274
Trans-SRQ-Shear.csv (8 kB)
MD5: f9a97cb4c85a5204d13fa2dc0dd1e102
Trans-SRQ-Vel-LargeFOV.csv (11000 kB)
MD5: 73bd1fd7208b81586d514792ad008a14
Trans-SRQ-Vel-SmallFOV.csv (10329 kB)
MD5: 421987139a10eb9c5c8b09145759d8ad
Codes.zip (249 kB)
MD5: 743a38b12c797a6cab9a22a9e96df479
BC_Stats_Transient_L.m (64 kB)
MD5: 618c9c98e0b8bce8eaef19d4a9f7294d
BC_Stats2_2.m (13 kB)
MD5: 4c32d45700d0106f18c7fe80d0b017f8
columnlegend2.m (4 kB)
MD5: fb0bb2d1a6c453dff585956b2f805dc8
ConductionAnalysis2.m (8 kB)
MD5: 71c0a17926693a45e1c8334e3518de12
csvwrite_with_headers.m (1 kB)
MD5: 71c0a17926693a45e1c8334e3518de12
DaVisSurfaceGeneratorFo.m (6 kB)
MD5: 906465d49743abd7e33fa5d062871799
DiaDen2.m (18 kB)
MD5: d1f8c52c60c167553feb32d96f5af2f1
InletAnalysisAndProfilesFromStats_Transient_6_4.m (22 kB)
MD5: 1044c28dafcc439b606a6a5cb8722140
InletAnalysisAndProfilesFromStats6_1.m (20 kB)
MD5: d1575da5b2eddd995b2b6619adc7cb03
InletVirtualOrigin.m (2 kB)
MD5: c0de82ec83760f31ef484215f85d80e5
InstantVelAnalysis.m (9 kB)
MD5: c6484380661b664922d24be8c587dab5
line_fewer_markers.m (11 kB)
MD5: ccdefb191ec5efadf145603e96449ae9
LineFitFunc.m (1 kB)
MD5: ccdefb191ec5efadf145603e96449ae9
PIV_dudy.m (2 kB)
MD5: 0d8cc0ac8262e0b483d5fa2aa3fa5af8
PIV_Stats.m (15 kB)
MD5: 71bdbf2ead021c0c36cb714ad770efb0
PIVdiaden.m (17 kB)
MD5: a0be7e005aed8f9af2b8e7e733298eba
PIVdiadenGUI.fig (15 kB)
MD5: 270b55c2eb9b20c19faaf7e82df985fc
PIVdiadenGUI.m (31 kB)
MD5: ccf441ee881703d2d39ae9a68fd90a77
PIVuncertainty_TransientDriver2.m (3 kB)
MD5: 70b89fc3ced7dfe57db4592d3c6bf8d7
PIVuncertaintyCode.m (90 kB)
MD5: 39bcf3c90104a7989eaa5ee759eba301
PIVuncertaintyGUI.fig (23 kB)
MD5: c043ac2fb793793ae8eef90349f6b215
PIVuncertaintyGUI.m (53 kB)
MD5: e1ed3d8ca0413b582b961bb321e53ccf
Plot_Uncertainties.m (1 kB)
MD5: 35d29cbe066996aa96ba76b3d59f650a
PlotVelocityInletContour_2.m (1 kB)
MD5: f626d6d2edc2654e1e892f39ebab2c98
SIG_parallel_New_4x32x32_75%_Round_2.m (25 kB)
MD5: be8902476251e3e6945e9c7d9fa32869
sort_nat.m (2 kB)
MD5: 8ae1a3798a9afcc1a3c4f9cde0a26ddd
SteadySRQ_Plots_2_8.m (32 kB)
MD5: 8989445a6677f85471ed8fc49c2fe9eb
SteadySRQ_Plots_HeatFlux_2_3.m (6 kB)
MD5: 8a93972a54301474d9b34ded6e06813f
SteadySRQ_Plots_HeatFlux_TC_Probe.m (6 kB)
MD5: 4e9d283d98fec8a22fee755b7bb8fb4b
subtightplot.m (3 kB)
MD5: 1dc7b1b71459a0dff0c5afd74520caad
surfaceViewer.m (25 kB)
MD5: b1e790b0904b1aad5e1768b301039d69
TempProfileAnalysis_y0_yPlusMax_loop_2_3.m (16 kB)
MD5: 36cab95f1c29b977b5971e892ca4e7f5
TemptoStar.m (2 kB)
MD5: 92b1465c8260669df0cc2ab4acba7c6f
tightfig.m (3 kB)
MD5: 92b1465c8260669df0cc2ab4acba7c6f
tightfig2_1.m (4 kB)
MD5: cd7914982da2c81470616af4f8cdc46e
ToStarInterpolator_Transient_5_3.m (20 kB)
MD5: 045d2cebe8d98b899c22b7510f05d71f
ToStarInterpolator4_4.m (17 kB)
MD5: a3bdcb63c2ac8066e104f587c07bf412
Transient_OutlierDetection.m (1 kB)
MD5: 98092816afd2c577b90bfafb8801b877
TransientCFD_GCI.m (15 kB)
MD5: bf51c7932d56acdf09a64974cab70d1d
TransientImageOrganization_2_3.m (6 kB)
MD5: 170bcb6177673d6e0f2ace7442d6de55
TransientSRQ_Plots_2_8.m (47 kB)
MD5: 0ce6c7841e93f38ef6bfc6ef39ddc66e
TrimToMask.m (2 kB)
MD5: 9ce81c474bcb8591614a78c8a50476e3
uigetfile_n_dir.m (1 kB)
MD5: c51fdc8dae264c5032de0053e93affc4
Uncertainty_4x32x32_75%_Round_PostProc_2.xml (58 kB)
MD5: 61efc9f8185235400b6290cff69e10ac
Uncertainty_4x32x32_75%_Round_PostProc_2_Used.mat (44 kB)
MD5: c25bd4660b2efbcea7baa83ccff69fe5
392636_supp_893C467A-817F-11E5-AD7B-B0FA94EF0FC5.zip (13053 kB)
MD5: 41ae3e41c4b0c5566271e48513f92ac4
392636_supp_A161BA0A-817F-11E5-8A4F-D4FA94EF0FC5.zip (248 kB)
MD5: dfaa768eaa7490ea8d8fa6860a4b388a
Comments
This research was completed as required for a Dissertation at Utah State University
Dataset consists of numerous file formats
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mechanical and Aerospace Engineering
Advisor/Chair:
Dr. Barton L. Smith