Aspen Bibliography

Title

Aspen Recovery Since Wolf Reintroduction on the Northern Yellowstone Winter Range

Document Type

Article

Journal/Book Title/Conference

Rangeland Ecology and Management

Volume

64

Issue

2

First Page

119

Last Page

130

Publication Date

2011

Abstract

Quaking aspen (Populus tremuloides Michx.) recruitment and overstory stem densities were sampled in 315 clones in 1991 and 2006 on 560 km2 of the Northern Yellowstone Winter Range (NYWR). A primary objective was to observe if aspen status had improved from 1991 to 2006: evidence of a wolf (Canis lupus) caused trophic cascade. Recruitment stems (height > 2 m and diameter at breast height < 5 cm) represent recent growth of aspen sprouts above elk (Cervus elaphus) browsing height, whereas overstory stems (all stems > 2 m) represent the cohort of stems, which will insure the sustainability of the clone. Overstory stem densities declined by 12% (P = 0.04) on the landscape scale when compared with paired t-tests. Overstory stems declined in 58% of individual clones and in 63% of the 24 drainages of the study area. The second objective was to determine which factors influenced changes in aspen density. Winter ungulate browsing (P = 0.0001), conifer establishment (P = 0.0001), and cattle (Bos spp.) grazing (P = 0.016) contributed to the decline in overstory stem densities when analyzed using a mixed effects model of log transformed medians. Eighty percent of the clones were classified as having medium to high browsing levels in 1991, whereas 65% of the clones received a similar rating in 2006, possibly due to the reduced NYWR elk population. Aspen recruitment has increased in some 2–10 km2 areas, but not consistently. Our study found that a trophic cascade of wolves, elk, and aspen, resulting in a landscape-level recovery of aspen, is not occurring at this time.