"Diurnal and Seasonal Patterns of Photosynthesis and Respiration by Ste" by Knowlton C. Foote and Michail Schaedle
 

Aspen Bibliography

Diurnal and Seasonal Patterns of Photosynthesis and Respiration by Stems of Populus tremuloides Michx

Document Type

Article

Journal/Book Title/Conference

Plant Physiology

Volume

58

Issue

5

First Page

651

Last Page

655

Publication Date

1976

Abstract

The photosynthetic and respiratory rates of 5- to 7-year-old aspen stems (Populus tremuloides Michx.) were monitored in the field for 1 year to determine the seasonal patterns. The stem was not capable of net photosynthesis, but the respiratory CO2 loss from the stem was reduced by 0 to 100% depending on the time of year and the level of illumination as a result of bark photosynthesis. The monthly dark respiratory rate ranged from 0.24 mg CO2/dm2· hr in January to a maximum 7.4 mg CO2/dm2· hr in June. Individual measurements ranged from 0.02 mg CO2/dm2· hr in February to 12.3 mg CO2/dm2· hr in June. Gross photosynthesis followed a pattern similar to the dark respiratory rate. The mean monthly rate was highest in June (1.65 mg CO2/dm2· hr) and lowest in December (0.02 mg CO2/dm2· hr). Individual measurements ranged from 0.0 mg CO2/dm2· hr in winter to 5.5 mg CO2/dm2· hr in July.

Winter studies showed that stem respiration continued down to −11 C, the coldest temperature during this study. Upon warning to −3 C, the dark respiratory rate showed a sudden sharp increase (7- to 12-fold) which required many hours to return to normal levels. No measurable photosynthesis occurred below −3 C. Between −3 and 0 C, the maximal photosynthetic rate was reduced to less than 50% of the respiratory rate, but increased to 89% between 5 to 10 C.

On a yearly basis, bark photosynthesis in P. tremuloides reduced the stem respiratory CO2 loss by 28.7% on a daytime basis and an estimated 16 to 18% on a 24-hour basis.

Share

 
COinS
 
 
 
BESbswy