Aspen Bibliography
Using Fire Regimes to Delineate Zones in a High-resolution Lake Sediment Record From the Western United States
Document Type
Article
Journal/Book Title/Conference
Quaternary Research
Volume
79
Issue
1
First Page
24
Last Page
36
Publication Date
2013
Abstract
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in southwestern Utah, USA. A regime shift detection algorithm was applied to background charcoal accumulation to define where statistically significant shifts in fire regimes occurred. The early Holocene was characterized by greater amounts of summer precipitation and less winter precipitation than modern. Ample forest fuel and warm summer temperatures allowed for large fires to occur. The middle Holocene was a transitional period between vegetation conditions and fire disturbance. The late Holocene climate is characterized as cool and wet reflecting an increase in snow cover, which reduced opportunities for fire despite increased availability of fuels. Similarities between modern forest fuel availability and those of the early Holocene suggest that warmer summers projected for the 21st century may yield substantial increases in the recurrence and ecological impacts of fire when compared to the fire regime of the last millennium.
Recommended Citation
Morris, Jesse L. et al. 2013. Using fire regimes to delineate zones in a high-resolution lake sediment record from the western United States. Quaternary Research. 79(1):24-36