Aspen Bibliography
Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence
Document Type
Article
Journal/Book Title/Conference
Geoderma
Volume
254
First Page
48
Last Page
60
Publication Date
2015
Abstract
As the largest actively cycling pool of terrestrial C, the response of soil organic matter (SOM) to climate change may greatly affect global C cycling and climate change feedbacks. Despite the influence of SOM chemistry—here defined as soil organic C (SOC) and soil organic N (SON) functional groups and compounds—on decomposition, uncertainty exists regarding the response of SOM chemistry to climate change and associated land use shifts. Here, we adopt a climosequence approach, using latitude along a uniform glacial till deposit at the grassland–forest ecotone in central Canada as a surrogate for the effects of climate change on SOM chemistry. Additionally, we evaluate differences in SOM chemistry from paired native grassland, native trembling aspen (Populus tremuloides) forest, and arable soil profiles to investigate the effects of likely climate-induced land use alterations.
The combination of C and N K-edge X-ray absorption near edge structure (XANES) with pyrolysis-field ionization mass spectrometry (Py-FIMS) techniques was used to examine SOM chemistry at atomic and molecular scales, respectively. These techniques revealed only modest differences in surface SOM chemistry related to land use and latitude. Greater variation was apparent in the vertical stratification of SOM constituents from soil depth profiles. These findings indicate that pedon-scale processes have greater control over SOM chemistry than do processes operating on landscape (e.g. land use) and regional (e.g. climate) scales. Additionally they imply that SOM chemistry is largely unresponsive to climatic change on the magnitude of the mean annual temperature (MAT) gradient under study (~ 0.7 °C), despite its location at the grassland–forest boundary highlighting its sensitivity, and is similarly unresponsive to associated land use shifts.
Recommended Citation
Purton, K., D. Pennock, P. Leinweber, and F. Walley. 2015. Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence. Geoderma 253:48-60.