Calculation of Deuterium Isotope Effects in Proton Transfer Reactions
Document Type
Article
Journal/Book Title
Journal of Molecular Structure
Publication Date
5-1994
Publisher
Elsevier
Volume
321
Issue
1-2
First Page
1
Last Page
10
Abstract
Various levels of theory are tested for the purpose of computing the rate constant for proton transfer reactions. Standard transition state theory is applied to a series of molecules with a progressively more bent intramolecular hydrogen bond. The systems all display similar deuterium isotope effects (DIEs); the larger DIE at low temperature is attributed to zero-point vibrational effects. However, when tunneling is incorporated via a microcanonical approach, a dramatically enhanced effect is observed for the most distorted H-bond. The energy barrier for proton transfer between carbon atoms involved in triple bonds is smaller than for carbons with lesser multiplicity. The DIE displays a sensitivity to temperature that is least for the carbon atoms with the greatest multiplicity of bonding. The tunneling obtained by following the minimum energy reaction path along the potential energy surface is similar to that when the potential is approximated by an Eckart barrier. However, significant discrepancies are observed at temperatures below about 250 K.
Recommended Citation
Calculation of Deuterium Isotope Effects in Proton Transfer Reactions S. Scheiner J. Mol. Struct. 1994 321, 1-10.
Comments
http://www.sciencedirect.com/science/article/pii/002228609308200N
Publisher PDF is available for download through the link above.
Published by Elsevier in Journal of Molecular Structure.