Document Type

Article

Journal/Book Title

Journal of Chemical Physics

Publication Date

1991

Volume

94

First Page

2807

Last Page

2816

DOI

10.1063/1.459857

Abstract

The combination of supermolecular Møller–Plesset treatment with the perturbation theory of intermolecular forces is applied in the analysis of the potential‐energy surface of Ar–H2O. The surface is very isotropic with the lowest barrier for rotation of ∼35 cm−1 above the absolute minimum. The lower bound for De is found to be 108 cm−1 and the complex reveals a very floppy structure, with Ar moving freely from the H‐bridged structure to the coplanar and almost perpendicular arrangement of the C2 –water axis and the Ar–O axis, ‘‘T‐shaped’’ structure. This motion is almost isoenergetic (energy change of less than 2 cm−1 ). The H‐bridged structure is favored by the attractive induction and dispersion anisotropies; the T‐shaped structure is favored by repulsive exchange anisotropy. The nonadditive effect in the Ar2–H2O cluster was also calculated. Implications of our results on the present models of hydrophobic interactions are also discussed.

Comments

Originally published by American Institute of Physics in the Journal of Chemical Physics.

Publisher's PDF can be accessed through the remote link.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.