Date of Award:

2013

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Physics

Advisor/Chair:

James T. Wheeler

Abstract

In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor—a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.

Included in

Physics Commons

Share

COinS