Date of Award:
5-2014
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Mathematics and Statistics
Committee Chair(s)
Jürgen Symanzik
Committee
Jürgen Symanzik
Committee
Piotr S. Kokoszka
Committee
John R. Stevens
Committee
D. Richard Cutler
Committee
Jiming Jin
Abstract
Due to a continual increase in the demand for water as well as an ongoing regional drought, there is an imminent need to monitor and forecast water resources in the Western United States. In particular, water resources in the Intermountain West rely heavily on snow water storage. Thus, the need to improve seasonal forecasts of snowpack and considering new techniques would allow water resources to be more effectively managed throughout the entire water-year. Many available models used in forecasting snow water equivalent (SWE) measurements require delicate calibrations.
In contrast to the physical SWE models most commonly used for forecasting, we offer a statistical model. We present a data-based statistical model that characterizes seasonal snow water equivalent in terms of a nested time-series, with the large scale focusing on the inter-annual periodicity of dominant signals and the small scale accommodating seasonal noise and autocorrelation. This model provides a framework for independently estimating the temporal dynamics of SWE for the various snow telemetry (SNOTEL) sites. We use SNOTEL data from ten stations in Utah over 34 water-years to implement and validate this model.
This dissertation has three main goals: (i) developing a new statistical model to forecast SWE; (ii) bridging existing R packages into a new R package to visualize and explore spatial and spatio-temporal SWE data; and (iii) applying the newly developed R package to SWE data from Utah SNOTEL sites and the Upper Sheep Creek site in Idaho as case studies.
Checksum
c8183c52486fe7b7ae88229648d76577
Recommended Citation
Odei, James Beguah, "Statistical Modeling, Exploration, and Visualization of Snow Water Equivalent Data" (2014). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 3871.
https://digitalcommons.usu.edu/etd/3871
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .