Date of Award:
5-2009
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Civil and Environmental Engineering
Committee Chair(s)
Paul J Barr
Committee
Paul J. Barr
Committee
Marvin W. Halling
Committee
James A. Bay
Abstract
For this research, prestress losses were monitored in six HPC bridge girders. These measured losses were compared to predicted losses according to four sources. Prestress loss predictive methods considered for this research were: 1- AASHTO LRFD 2004, 2- AASHTO LRFD 2004 Refined, 3- AASHTO LRFD 2007, and 4- AASHTO LRFD Lump Sum method. On the other hand, the camber prediction methods used in the present research were: 1- Time dependent method described in NCHRP Report 496, 2- PCI multiplier method, and 3- Improved PCI Multiplier method. For the purpose of this research, long-term prestress losses were monitored in select girders from Bridge 669 located near Farmington, Utah. Bridge 669 is a three-span prestress concrete girder bridge. The three spans have lengths of 132.2, 108.5, and 82.2 feet long, respectively. Eleven AASHTO Type VI precast prestressed girders were used to support the deck in each span. The deflection of several girders from a three-span, prestressed, precast concrete girder bridge was monitored for 3 years. Fifteen bridge girders were fabricated for the three span-bridge. Ten girders from the exterior spans had span length of 80 feet, and five girders from the middle span had span length of 137 feet. From the results of this research, in both the 82- and 132-foot-long, the AASHTO LRFD 2004 Refined Method does a better job predicting the prestress loss and it can be concluded that all the prediction methods do a better job predicting the loss for the larger girders. The Lump Sum method predicted very accurately the long term prestress loss for the 132-foot-long girders.
Checksum
27586f499b662608fc4692fc6978dc42
Recommended Citation
Angomas, Franklin B., "Behavior of Prestressed Concrete Bridge Girders" (2009). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 405.
https://digitalcommons.usu.edu/etd/405
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .