Date of Award:

5-2010

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Mechanical and Aerospace Engineering

Committee Chair(s)

David K. Geller

Committee

David K. Geller

Committee

R. Rees Fullmer

Committee

Barton L. Smith

Abstract

A linear covariance analysis is conducted to assess closed-loop guidance, navigation, and control system (GN&C) performance of the Altair vehicle during lunar powered descent. Guidance algorithms designed for lunar landing are presented and incorporated into the closed-loop covariance equations. Navigation-based event triggering is also included in the covariance formulation to trigger maneuvers and control dispersions. Several navigation and guidance trade studies are presented demonstrating the influence of triggering and guidance and study parameters on the vehicle GN&C performance.

Checksum

c669dd6181b4f6249edbcc02e6bb8202

Share

COinS