Date of Award:
12-2011
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Mechanical and Aerospace Engineering
Committee Chair(s)
Thomas Hauser
Committee
Thomas Hauser
Committee
Heng Ban
Committee
Stephen Whitmore
Abstract
A stand-alone genetic algorithm (GA) and an surrogate-based optimization (SBO) combined with a GA were compared for accuracy and performance. Comparisons took place using the Ackley Function and Rastrigin's Function, two functions with multiple local maxima and minima that could cause problems for more traditional optimization methods, such as a gradient-based method. The GA and SBO with GA were applied to the functions through a fortran interface and it was found that the SBO could use the same number of function evaluations as the GA and achieve at least 5 orders of magnitude greater accuracy through the use of surrogate evaluations.
The two optimization methods were used in conjunction with computational fluid dynamics (CFD) analysis to optimize the shape of a bumpy airfoil section. Results of optimization showed that the use of an SBO can save up to 553 hours of CPU time on 196 cores when compared to the GA through the use of surrogate evaluations. Results also show the SBO can achieve greater accuracy than the GA in a shorter amount of time, and the SBO can reduce the negative effects of noise in the simulation data while the GA cannot.
Checksum
54a7ddcd26c8be0062b41df0d50e65a3
Recommended Citation
Johansen, Todd A., "Optimization of a Low Reynold's Number 2-D Inflatable Airfoil Section" (2011). All Graduate Theses and Dissertations, Spring 1920 to Summer 2023. 864.
https://digitalcommons.usu.edu/etd/864
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work made publicly available electronically on April 6, 2011.