Date of Award:

5-2011

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Watershed Sciences

Committee Chair(s)

Wayne Wurtsbaugh

Committee

Wayne Wurtsbaugh

Committee

Phaedra Budy

Committee

David Stevens

Abstract

Lakes have historically been overlooked as important nutrient processors within their watersheds. In general ecologists have focused on streams as zones of uptake and transformation, while viewing lakes as simple nutrient traps. However, recent research has highlighted the large influence that lakes may have on water chemistry within their watersheds. Within the field of limnology, researchers have traditionally focused on the pelagic zone for in-lake production. Further research in shallow lakes has highlighted the role benthic production within the littoral zone plays in the lake ecosystem. The greater influence of lakes is highlighted when comparing watersheds containing lakes with watersheds composed of solely stream channels. To assess the influence that lakes have on water chemistry and nutrient transport, both field and modeling analyses were performed for Bull Trout Lake, Idaho. In 2008 a large field sampling effort was conducted along with a 15N tracer experiment to characterize the limnology of Bull Trout Lake (Idaho) and nitrogen uptake and transport through the lake. Following the termination of the field season a multi-lake ecosystem model was developed with the use of a one-dimensional lake water quality model. Results from both experiments demonstrated the role of Bull Trout Lake as a nutrient processor and source within its watershed and further suggested the added influence additional lakes might have on water chemistry. The outcomes of the tracer study indicated that pelagic primary producers have the first opportunity to assimilate nitrogen delivered by the inflow stream; however, nutrients incorporated into plants within the littoral zone are held on to longer. Further the tracer experiment demonstrated the small role that large organisms have in ecosystem nutrient dynamics. The multi-lake model demonstrated the effect of BTL as a nutrient source within the watershed and indicated that although multiple lakes in sequence may have additive effects, most of this influence is expressed in the first two lakes of a series. Our research provides examples of valuable tools in limnological research. While whole-lake tracer studies have rarely been performed, they are extremely effective in understanding ecosystems. Additionally, even though lake models may be simplifications of natural systems, they can provide an efficient means of understanding lake functioning and testing hypotheses.

Checksum

98c22bd8474c708200af31658e3af291

Comments

This work made publicly available electronically on May 11, 2011.

Share

COinS