Document Type

Article

Journal/Book Title/Conference

Proceedings of the Society of Photo-Optical Instrumentation Engineers (Cryogenic Optical Systems and Instruments)

Volume

8863

Publication Date

2013

DOI

10.1117/12.2030231

Abstract

Disordered thin film SiO2/SiOx coatings undergoing electron-beam bombardment exhibit cathodoluminescence, which can produce deleterious stray background light in cryogenic space-based astronomical observatories exposed to high- energy electron fluxes from space plasmas. As future observatory missions push the envelope into more extreme environments and more complex and sensitive detection, a fundamental understanding of the dependencies of this cathodoluminescence becomes critical to meet performance objectives of these advanced space-based observatories. Measurements of absolute radiance and emission spectra as functions of incident electron energy, flux, and power typical of space environments are presented for thin (~60-200 nm) SiO2/SiOx optical coatings on reflective metal substrates over a range of sample temperatures (~40-400 K) and emission wavelengths (~260-5000 nm). Luminescent intensity and peak wavelengths of four distinct bands were observed in UV/VIS/NIR emission spectra, ranging from 300 nm to 1000 nm. A simple model is proposed that describes the dependence of cathodoluminescence on irradiation time, incident flux and energy, sample thickness, and temperature.

Comments

Publisher version available for download through link above.

Copyright 2013 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.