All Physics Faculty Publications
Document Type
Article
Journal/Book Title/Conference
Journal of Spacecraft and Rockets
Volume
47
Issue
1
Publication Date
2010
First Page
134
Last Page
146
Abstract
As mankind reaches to explore extreme environments in space, the application of ceramics surface coatings is increasing. The 2005 mission concept for Solar Probe used a unique design to achieve the necessary thermal control for a very close approach to the solar corona, including the use of a highly refractory, electrically insulating ceramic coating over a carbon-carbon composite heat shield. The proposed trajectory takes the spacecraft from a Jovian fly-by to within 4 solar radii of the Sun, spanning 5 orders of magnitude in solar radiation and solar wind plasma density as well as spacecraft temperatures from <100 K to >2000 K. Using the NASCAP-2K charging modeling program, the degree of charging expected for this spacecraft design has been calculated for this range of radiation environments. New measurements of the electron emission and estimates of related properties of the candidate materials—Al2O3, pyrolytic born nitride and barium zirconium phosphate—are presented. Absolute and differential surface charging are found to depend strongly on temperature through increased conductivity at higher temperatures and on radiation flux through enhanced charge accumulation and radiation induced conductivity. As the spacecraft approaches the Sun, the competition between increased charge dissipation at higher temperatures and increased charge accumulation at higher fluxes leads to a maximum in differential charging between 0.4 AU and 2 AU. While the spacecraft charging behavior of these materials is found to be significant, it is not severe enough to endanger the mission, and a number of options exist to mitigate the degree of charging. Among the ceramics considered, the use of Al2O3 coatings is found to minimize both absolute and differential spacecraft charging.
Recommended Citation
Michelle M. Donegan, Jennifer L. Sample, JR Dennison and Ryan Hoffmann, “Coating-Induced Charging of the Solar Probe Spacecraft: A Materials and Modeling Study of Environmental Extremes,” Journal of Spacecraft and Rockets, 47(1), 134-146, (2010). DOI: 10.2514/1.40882
Comments
Published by AIAA in Journal of Spacecrafts and Rockets. Publisher version available here and requires subscription. Authors post print available for download through link above.