All Physics Faculty Publications

Title

A Complete Set of Observables for Cylindrically Symmetric Gravitational Fields

Document Type

Article

Journal/Book Title/Conference

Classical and Quantum Gravity

Volume

8

Issue

10

Publisher

Institute of Physics

Publication Date

1991

First Page

1895

Last Page

1911

DOI

10.1088/0264-9381/8/10/015

Abstract

The author constructs a complete set of observables on the infinite-dimensional phase space of cylindrically symmetric gravitational fields. These observables have vanishing Poisson brackets with all constraint functions of the theory and are complete in the sense that any 'gauge invariant' function can, on the constraint surface, be expressed as a function of the observables. The key to the isolation of the observables is the observation that, in generally covariant theories, observables represent nothing more than a correlation of the true degrees of freedom with certian other phase space variables which represent time. Following the work of Kuchar (1989), the true degrees of freedom are identified with the free Cauchy data for the Einstein-Rosen waves, while the variables representing the (many-fingered) time are identified with the Einstein-Rosen 'extrinsic time' and space variables. The observables are constructed by solving for the evolution of the true degrees of freedom in terms of the many-fingered time and then inverting the solution to obtain the 'initial data' of the theory as functions on the gravitational phase space.

Comments

Originally published by the Institute of Physics. Publisher's PDF available through remote link. Note: Charles Torre was affiliated with Syracuse University at the time of publication.

http://iopscience.iop.org/0264-9381/8/10/015/