All Physics Faculty Publications
Document Type
Article
Journal/Book Title/Conference
Physical Review E
Volume
54
Issue
3
Publisher
American Physical Society
Publication Date
9-1-1996
First Page
2620
Last Page
2627
Abstract
Linear analysis and nonlinear numerical simulations of autocatalytic reaction fronts ascending in narrow vertically unbounded slabs describe the growth, development, and annihilation of fingers in the front, the dynamics of edge suppression, and a secondary transition to a two-roll state above the onset of convection. The pattern formation and evolution of the reaction fronts are determined by the horizontal aspect ratio Γ=b/a and the dimensionless driving parameter S=δga3/νDC, which involve the gap thickness a, the slab width b, the fractional density difference δ between the unreacted and reacted solutions, the gravitational acceleration g, the kinematic viscosity ν, and the catalyst molecular diffusivity DC. The reaction fronts satisfy a chemical reaction-diffusion equation and two-dimensional Navier-Stokes equations describing the average Poiseuille velocity in the vertical plane perpendicular to the gap direction. The wavelength of maximum growth rate reaches a minimum value at a≊1 mm.
Recommended Citation
Pattern formation and evolution near autocatalytic reaction fronts ina narrow vertical slab, J. Huang and B. F. Edwards, Phys. Rev. E. 54,2620 (1996) [32].
Comments
http://link.aps.org/doi/10.1103/PhysRevE.54.2620
Published by American Physical Society in Physical Review E. Publisher PDF is available for download through the link above.