All Physics Faculty Publications
Magnetic Control of Rayleigh-Benard Convection
Document Type
Conference Paper
Journal/Book Title/Conference
Bulletin of the American Physical Society
Volume
42
Publication Date
1997
Abstract
Inhomogeneous magnetic fields exert a magnetic body force on electrically nonconducting, magnetically permeable fluids subject to a thermal gradient. This force can be utilized to compensate for gravity and thereby to control convection. The field effect on convection is represented by a dimensionless vector parameter \rmR_m=\mu_0\alpha\chi_0d^3\Delta Tøver\rho_0\nu D_T \left(\rmH\cdot\nabla\rmH\right)_\rmr=0^ext for diamagnetic fluids or \rmR_m=\mu_0\chi_0d^3\Delta Tøver\rho_0T_0\nu D_T\left( \rmH\cdot\nabla\rmH\right)_\rmr=0^ext for paramagnetic fluids. This parameter measures the strength of the induced magnetic buoyancy force due to the applied field gradient relative to the dissipative effects. Its vertical component competes with gravitational buoyancy, and a critical relationship between this component and the usual Rayleigh number is identified for the onset of convection. Predictions for paramagnetic fluids agree with the experiments. Magnetically driven convection should be observable even in diamagnetic fluids such as pure water using current magnetic technology.
Recommended Citation
“Magnetic Control of Rayleigh-Benard Convection,” J. Huang, D. D. Gray, and B. F. Edwards, presented at the November APS Division of Fluid Dynamics Meeting, Bull. Am. Phys. Soc. 42, 2181 (1997).
http://flux.aps.org/meetings/YR97/BAPSDFD97/abs/S3700006.html
Comments
Presented at the November 1997 APS Division of Fluid Dynamics Meeting, Bull. Am. Phys. Soc. 42, 2181.