Document Type
Article
Journal/Book Title/Conference
Remote Sens.
Issue
5
Publication Date
1-1-2013
First Page
1974
Last Page
1997
Abstract
This paper considers an experimental approach for assessing algorithms used to exploit remotely sensed data. The approach employs synthetic images that are generated using physical models to make them more realistic while still providing ground truth data for quantitative evaluation. This approach complements the common approach of using real data and/or simple model-generated data. To demonstrate the value of such an approach, the behavior of the FastICA algorithm as a hyperspectral unmixing technique is evaluated using such data. This exploration leads to a number of useful insights such as: (1) the need to retain more dimensions than indicated by eigenvalue analysis to obtain near-optimal results; (2) conditions in which orthogonalization of unmixing vectors is detrimental to the exploitation results; and (3) a means for improving FastICA unmixing results by recognizing and compensating for materials that have been split into multiple abundance maps
Recommended Citation
Stites, Mathew; Gunther, Jacob; Moon, Todd; and Williams, Gustavious, "Using Physically-Modeled Synthetic Data to Assess Hyperspectral Unmixing Approaches" (2013). Space Dynamics Laboratory Publications. Paper 124.
https://digitalcommons.usu.edu/sdl_pubs/124