Document Type
Article
Journal/Book Title/Conference
Ninth International Livestock Environment Symposium Sponsored by ASABE
Publication Date
7-12-2012
Abstract
Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and optical particle counters (OPCs) characterized aerodynamic and optical properties, while a scanning elastic lidar measured particles around the facility. The lidar was calibrated to PM concentration using the point measurements. NH3 concentrations were measured using 23 passive samplers and 2 open-path Fourier transform infrared spectrometers (FTS). Emission rates and factors were estimated through both an inverse modeling technique using AERMOD coupled with measurements and a mass-balance approach applied to lidar PM data. Mean PM emission factors ± 95% confidence interval were 3.8 ± 3.2, 24.8 ± 14.5, and 75.9 ± 33.2 g/d/AU for PM2.5, PM10, and TSP, respectively, from inverse modeling and 1.3 ± 0.2, 15.1 ± 2.2, and 46.4 ± 7.0 g/d/AU for PM2.5, PM10, and TSP, respectively, from lidar data. Average daily NH3 emissions from the pens, liquid manure ponds, and the whole facility were 143.4 ± 162.0, 29.0 ± 74.7, and 172.4 ± 121.4 g/d/AU, respectively, based on the passive sampler data and 190.6 ± 55.8, 16.4 ± 8.4, and 207.1 ± 54.7 g/d/AU, respectively, based on FTS measurements. Liquid manure pond emissions averaged 5.4 ± 13.9 and 3.1 ± 1.6 g/m2/d based on passive sampler and FTS measurements, respectively. The calculated PM10 and NH3 emissions were of similar magnitude as those found in literature. Diurnal emission patterns were observed.
Recommended Citation
Moore, Kori D.; Marchant, Christian C.; Young, Emyrei; Martin, Randal S.; Pfeiffer, Richard L.; Prueger, john H.; and Hatfield, Jerry L., "Emissions Calculated from Particulate Matter and Gaseous Ammonia Measurements from Commercial Dairy in California, USA" (2012). Space Dynamics Laboratory Publications. Paper 93.
https://digitalcommons.usu.edu/sdl_pubs/93