Session

Technical Session VI: The Upcoming Year

Abstract

The objective of the Integrated Structural Electrodynamic Propulsion (ISEP) Experiment is to demonstrate the ability of multi-functional conductive structures to generate thrust and torque on a spacecraft system. The ISEP experiment will deploy several lightweight, conducting structures nominally 10 meters in length from a CubeSat and demonstrate generation of electrodynamic thrust and torque by driving currents along these booms. To affect current closure to the plasma, a combination of field emissive array cathodes (FEACs) along with simple lightweight, compact electron collectors, and miniature plasma contactors will be used to drive up to 1 ampere of current through the booms. The goal is to generate current flow through the conductors in such a way as to produce measurable thrust and torque on the host spacecraft, further validating the proposed concept. The data obtained on plasma contactor performance and electrodynamic thrust will validate the feasibility of the ISEP concept and provide crucial guidance on how to design future space systems incorporating structures with integrated electrodynamic (ED) propulsion. These results will also be of benefit to missions and concepts that utilize electrodynamic propulsion ranging from ED tether deorbit systems, ED drag makeup tether systems, as well as systems requiring efficient plasma contactors such as traditional electric propulsion and spacecraft charging subsystems.

SSC07-VI-5.pdf (2074 kB)
Presentation Slides

Share

COinS
 
Aug 14th, 4:30 PM

The Integrated Structureless Electrodynamic Propulsion (ISEP) Experiment

The objective of the Integrated Structural Electrodynamic Propulsion (ISEP) Experiment is to demonstrate the ability of multi-functional conductive structures to generate thrust and torque on a spacecraft system. The ISEP experiment will deploy several lightweight, conducting structures nominally 10 meters in length from a CubeSat and demonstrate generation of electrodynamic thrust and torque by driving currents along these booms. To affect current closure to the plasma, a combination of field emissive array cathodes (FEACs) along with simple lightweight, compact electron collectors, and miniature plasma contactors will be used to drive up to 1 ampere of current through the booms. The goal is to generate current flow through the conductors in such a way as to produce measurable thrust and torque on the host spacecraft, further validating the proposed concept. The data obtained on plasma contactor performance and electrodynamic thrust will validate the feasibility of the ISEP concept and provide crucial guidance on how to design future space systems incorporating structures with integrated electrodynamic (ED) propulsion. These results will also be of benefit to missions and concepts that utilize electrodynamic propulsion ranging from ED tether deorbit systems, ED drag makeup tether systems, as well as systems requiring efficient plasma contactors such as traditional electric propulsion and spacecraft charging subsystems.