Session
Technical Session X: Advanced Technologies 1
Abstract
To date nanosatellites have primarily relied on magnetic stabilization which is sufficient to meet thermal and communications needs but is not suited for most payloads. The ability to put one, or even three, reaction wheels on a spacecraft in the 2-20 kg range enables new classes of mission. With reaction wheels and an appropriate sensor suite a nanosatellite can point in arbitrary directions with accuracies on the order of a degree. Sinclair Interplanetary, in collaboration with the University of Toronto Space Flight Laboratory (SFL), has developed a reaction wheel suitable for very small spacecraft. It fits within a 5 x 5 x 4 cm box, weighs 185 g, and consumes only 100 mW of power at nominal speed. No pressurized enclosure is required, and the motor is custom made in one piece with the flywheel. The wheel is in mass production with sixteen flight units delivered, destined for the CanX series of nanosatellites. The first launch is expected in 2007. Future missions that will make use of these wheels include CanX-3 (BRITE), which will make astronomical observations that cannot be duplicated by any existing terrestrial facility, and CanX-4 and -5, which will demonstrate autonomous precision formation flying.
Presentation Slides
Enabling Reaction Wheel Technology for High Performance Nanosatellite Attitude Control
To date nanosatellites have primarily relied on magnetic stabilization which is sufficient to meet thermal and communications needs but is not suited for most payloads. The ability to put one, or even three, reaction wheels on a spacecraft in the 2-20 kg range enables new classes of mission. With reaction wheels and an appropriate sensor suite a nanosatellite can point in arbitrary directions with accuracies on the order of a degree. Sinclair Interplanetary, in collaboration with the University of Toronto Space Flight Laboratory (SFL), has developed a reaction wheel suitable for very small spacecraft. It fits within a 5 x 5 x 4 cm box, weighs 185 g, and consumes only 100 mW of power at nominal speed. No pressurized enclosure is required, and the motor is custom made in one piece with the flywheel. The wheel is in mass production with sixteen flight units delivered, destined for the CanX series of nanosatellites. The first launch is expected in 2007. Future missions that will make use of these wheels include CanX-3 (BRITE), which will make astronomical observations that cannot be duplicated by any existing terrestrial facility, and CanX-4 and -5, which will demonstrate autonomous precision formation flying.