Session

Session I: Beyond LEO

Abstract

The Near Earth Asteroid (NEA) Scout mission is an innovative CubeSat concept manifested on Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and second uncrewed test flight of the Orion Multi-Purpose Crew Vehicle. This paper will focus on mission elements involved in the implementation of a solar sail on a deep space CubeSat mission and will leverage component and subsystem test and analysis results. Spacecraft configuration dependencies and constraints will be addressed including the manipulation of the spacecraft center-of-mass and center-of-pressure relationship through a new enabling technology, the Active Mass Translator (AMT). Prediction of the resulting propulsive solar sail characteristics through thrust model development and associated impacts on mission design and trajectory resiliency will also be included. Subsequent to these inputs, imposed power and telecommunication constraints and overall impacts on the mission ConOps will be outlined. Breadboard and engineering development unit test results will be presented in the context of these system-level dependencies to provide developmental lessons learned and address competing spacecraft needs.

The "6U" solar sail-propelled CubeSat will address human exploration-focused Strategic Knowledge Gaps. NEA Scout will perform a close and slow rendezvous to provide the first imagery and characterization of a NEA in them² solar sail to serve as the primary means of propulsion to the NEA providing a ΔV up to two kilometers per second, a magnitude currently impossible to meet with other high technology readiness level CubeSat-sized propulsion systems. Momentum exchange between the Sun's photons and the solar sail membrane provides the means necessary to perform a long duration deep space cruise and perform a NEA rendezvous at(resource utilization, planetary defense, human operations, and science) and paves the way for future multi-spacecraft exploration of NEAs. Using an optical imaging payload, NEA Scout will characterize the morphology, rotational and orbital properties, volume, color type and meteoritic classification, as well as the dust/debris environment of the target.

NEA Scout is funded through NASA's Human Exploration and Operations Mission Directorate's Advanced Exploration Systems program and is under joint development by the Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). The missions leverage technologies and experience gained from JPL's deep-space CubeSat developments (Interplanetary Nano-Spacecraft Pathfinder In Relevant Environment (INSPIRE) and Mars Cube One (MarCO)) and MSFC's NanoSail-D2, the first CubeSat mission to deploy a solar sail.

Share

COinS
 
Aug 6th, 9:45 AM

Near Earth Asteroid (NEA) Scout Solar Sail Implementation

The Near Earth Asteroid (NEA) Scout mission is an innovative CubeSat concept manifested on Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and second uncrewed test flight of the Orion Multi-Purpose Crew Vehicle. This paper will focus on mission elements involved in the implementation of a solar sail on a deep space CubeSat mission and will leverage component and subsystem test and analysis results. Spacecraft configuration dependencies and constraints will be addressed including the manipulation of the spacecraft center-of-mass and center-of-pressure relationship through a new enabling technology, the Active Mass Translator (AMT). Prediction of the resulting propulsive solar sail characteristics through thrust model development and associated impacts on mission design and trajectory resiliency will also be included. Subsequent to these inputs, imposed power and telecommunication constraints and overall impacts on the mission ConOps will be outlined. Breadboard and engineering development unit test results will be presented in the context of these system-level dependencies to provide developmental lessons learned and address competing spacecraft needs.

The "6U" solar sail-propelled CubeSat will address human exploration-focused Strategic Knowledge Gaps. NEA Scout will perform a close and slow rendezvous to provide the first imagery and characterization of a NEA in them² solar sail to serve as the primary means of propulsion to the NEA providing a ΔV up to two kilometers per second, a magnitude currently impossible to meet with other high technology readiness level CubeSat-sized propulsion systems. Momentum exchange between the Sun's photons and the solar sail membrane provides the means necessary to perform a long duration deep space cruise and perform a NEA rendezvous at(resource utilization, planetary defense, human operations, and science) and paves the way for future multi-spacecraft exploration of NEAs. Using an optical imaging payload, NEA Scout will characterize the morphology, rotational and orbital properties, volume, color type and meteoritic classification, as well as the dust/debris environment of the target.

NEA Scout is funded through NASA's Human Exploration and Operations Mission Directorate's Advanced Exploration Systems program and is under joint development by the Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). The missions leverage technologies and experience gained from JPL's deep-space CubeSat developments (Interplanetary Nano-Spacecraft Pathfinder In Relevant Environment (INSPIRE) and Mars Cube One (MarCO)) and MSFC's NanoSail-D2, the first CubeSat mission to deploy a solar sail.