Location

Salt Lake Community College Student Center

Start Date

5-4-2009 9:15 AM

Description

The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are invalid for data from systems with wide bandwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing.

We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data.

Share

COinS
 
May 4th, 9:15 AM

Generalized Processing for Pulsed Synthetic Aperture Radar

Salt Lake Community College Student Center

The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are invalid for data from systems with wide bandwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing.

We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data.