Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate


Simulations are becoming increasingly popular in science and engineering. One type of simulation is Computation Fluid Dynamics (CFD) that is used when closed forms solutions are impractical. The field of Verification & Validation emerged from the need to assess simulation accuracy as they often contain approximations and calibrations.

Validation involves the comparison of experimental data with simulation outputs and is the focus of this work. Errors in simulation predictions may be assessed in this way. Validation requires highly-detailed data and description to accompany these data, and uncertainties are very important.

The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD simulations. This aim is fundamentally different from the typical discovery experiments common in research. The measurement of these physics was not necessarily original but performed with modern, high fidelity methods. Data were tabulated through an online database for direct use in Reynolds-Averaged Navier Stokes simulations. Detailed instrumentation and documentation were used to make the data more useful for validation. This work fills the validation data gap for steady and transient mixed convection.

The physics in this study included mixed convection on a vertical flat plate. Mixed convection is a condition where both forced and natural convection influence fluid momentum and heat transfer phenomena. Flow was forced over a vertical flat plate in a facility built for validation experiments. Thermal and velocity data were acquired for steady and transient flow conditions. The steady case included both buoyancy-aided and buoyancy-opposed mixed convection while the transient case was for buoyancy-opposed flow. The transient was a ramp-down flow transient, and results were ensemble-averaged for improved statistics. Uncertainty quantification was performed on all results with bias and random sources.

An independent method of measuring heat flux was devised to assess the accuracy of commercial heat flux sensors used in the heated wall. It measured the convective heat flux by the temperature gradient in air very near the plate surface. Its accuracy was assessed by error estimations and uncertainty quantification.

Document Type




File Format


Publication Date


Embargo Period





This research was completed as required for a Dissertation at Utah State University

Dataset consists of numerous file formats

Degree Name:

Doctor of Philosophy (PhD)


Mechanical and Aerospace Engineering


Dr. Barton L. Smith


Mechanical Engineering


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



Previous Versions

Sep 22 2015 (withdrawn)


Lance_Dissertation_2015.pdf (5437 kB)
MD5: 39ec08140d3712645fb4ae5e5d5b1d99

Data.zip (13053 kB)
MD5: 0206abc512b00edfd182e3c30988678b

Aid-BC-AtmCond.csv (1 kB)
MD5: d4db291e275912d746eca81b9cfb13cd

Aid-BC-HeatedWallTemp.csv (7 kB)
MD5: 5395739959ed9d4af353d8abdeddef98

Aid-BC-InletTemp.csv (1 kB)
MD5: 44387a1b86698be28256022ea987bbe6

Aid-BC-Inlet-Vel.csv (270 kB)
MD5: c4388b1857a7273be3c0d7d3b81a2c53

Aid-BC-LeftWallTemp.csv (1 kB)
MD5: 5065ed2943a7005e7345051664f7ed4d

Aid-BC-RightWallTemp.csv (1 kB)
MD5: a5107835afb25b406dae12bdf81a1fa8

Aid-BC-TopWallTemp.csv (1 kB)
MD5: 5618c9b22c86dc70d6a3dade0f85105f

Aid-SRQ-HeatFlux.csv (1 kB)
MD5: 950ec2d3f17a6fd9f7d76fb79edd9d5d

Aid-SRQ-Shear.csv (1 kB)
MD5: 829707f025c8babaa2b84fb293e100bf

Aid-SRQ-Vel_x1.csv (23 kB)
MD5: 97795300beef4fe1fde3e3a528e6bef2

Aid-SRQ-Vel_x2.csv (24 kB)
MD5: 6aa88863799c5e8288c0386721437c0f

Aid-SRQ-Vel_x3.csv (24 kB)
MD5: e17da18caf8af5ea9fe884913916ca6d

All-BC-AsBuiltGeometry.x_t (17 kB)
MD5: 94ac31986038afdbe9a2ef57cd52ce18

All-BC-AsBuiltMeasurements.csv (1 kB)
MD5: 19e2a1b1a18a8cc2388ca35e759f353

All-BC-AsBuiltMeasurementUncertainties.csv (1 kB)
MD5: 2fa46d6cf2a4e6378c489ee558870baa

All-BC-AsBuiltSketch.pdf (53 kB)
MD5: 723a2552139579c5d5649c4b3bc8dce7

Opp-BC-AtmCond.csv (1 kB)
MD5: cf1b1cf8ef68497e75436e1d1a4734ef

Opp-BC-HeatedWallTemp.csv (7 kB)
MD5: 6549cb44fb169c8f0d0cba2e80f212a3

Opp-BC-InletTemp.csv (1 kB)
MD5: cf12cb665e80713679a1eb1c60d3d90e

Opp-BC-Inlet-Vel.csv (482 kB)
MD5: b584c87854817bbf8358668af520414c

Opp-BC-LeftWallTemp.csv (1 kB)
MD5: 3553a3e3d0cd504028135539070ab697

Opp-BC-RightWallTemp.csv (1 kB)
MD5: ae6a9bc9fc3dda4044acae272808e2da

Opp-BC-TopWallTemp.csv (1 kB)
MD5: f86ea65a58f21492d922110fc961492f

Opp-SRQ-HeatFlux.csv (1 kB)
MD5: bc4a431406e84dfa3df9518bda710d6d

Opp-SRQ-Shear.csv (1 kB)
MD5: fb72659f2030794999d58ba1c19d1711

Opp-SRQ-T_x1.csv (1 kB)
MD5: 10a5e9e3ab1cf39ecdeb14a4089dec09

Opp-SRQ-T_x2.csv (1 kB)
MD5: c0ed298d83fa491773facc49553a7a75

Opp-SRQ-T_x3.csv (1 kB)
MD5: 9d02e05d8269bedd884aa0e9b91821fd

Opp-SRQ-Vel_x1.csv (46 kB)
MD5: f63ec42318bc94e6d1179d0f03aa0025

Opp-SRQ-Vel_x2.csv (43 kB)
MD5: 2c100ed694cbdfce4c59372840b2784f

Opp-SRQ-Vel_x3.csv (43 kB)
MD5: 47299e52fcab89983b6e6117160df49c

Trans-BC-AtmCond.csv (1 kB)
MD5: be299ae7cc7631e28733fbeb7cef0b24

Trans-BC-HeatedWallTemp.csv (438 kB)
MD5: 6b8d73fc44e0262b08752e6f5c76dd9f

Trans-BC-InletTemp.csv (38 kB)
MD5: b7d9a04cf7519936a16fbd0624f046a2

Trans-BC-Inlet-Vel.csv (22234 kB)
MD5: 439b353901831c8c348eb0d89a93cb09

Trans-BC-LeftWallTemp.csv (45 kB)
MD5: 7471478403386e880fbdbdcf08c47c19

Trans-BC-RightWallTemp.csv (44 kB)
MD5: c4fcc0006bdc63edeb52977849f974f3

Trans-BC-TopWallTemp.csv (44 kB)
MD5: d3559f9e39cce9e7ddd7e0b766001274

Trans-SRQ-HeatFlux.csv (14 kB)
MD5: d3559f9e39cce9e7ddd7e0b766001274

Trans-SRQ-Shear.csv (8 kB)
MD5: f9a97cb4c85a5204d13fa2dc0dd1e102

Trans-SRQ-Vel-LargeFOV.csv (11000 kB)
MD5: 73bd1fd7208b81586d514792ad008a14

Trans-SRQ-Vel-SmallFOV.csv (10329 kB)
MD5: 421987139a10eb9c5c8b09145759d8ad

Codes.zip (249 kB)
MD5: 743a38b12c797a6cab9a22a9e96df479

BC_Stats_Transient_L.m (64 kB)
MD5: 618c9c98e0b8bce8eaef19d4a9f7294d

BC_Stats2_2.m (13 kB)
MD5: 4c32d45700d0106f18c7fe80d0b017f8

columnlegend2.m (4 kB)
MD5: fb0bb2d1a6c453dff585956b2f805dc8

ConductionAnalysis2.m (8 kB)
MD5: 71c0a17926693a45e1c8334e3518de12

csvwrite_with_headers.m (1 kB)
MD5: 71c0a17926693a45e1c8334e3518de12

DaVisSurfaceGeneratorFo.m (6 kB)
MD5: 906465d49743abd7e33fa5d062871799

DiaDen2.m (18 kB)
MD5: d1f8c52c60c167553feb32d96f5af2f1

InletAnalysisAndProfilesFromStats_Transient_6_4.m (22 kB)
MD5: 1044c28dafcc439b606a6a5cb8722140

InletAnalysisAndProfilesFromStats6_1.m (20 kB)
MD5: d1575da5b2eddd995b2b6619adc7cb03

InletVirtualOrigin.m (2 kB)
MD5: c0de82ec83760f31ef484215f85d80e5

InstantVelAnalysis.m (9 kB)
MD5: c6484380661b664922d24be8c587dab5

line_fewer_markers.m (11 kB)
MD5: ccdefb191ec5efadf145603e96449ae9

LineFitFunc.m (1 kB)
MD5: ccdefb191ec5efadf145603e96449ae9

PIV_dudy.m (2 kB)
MD5: 0d8cc0ac8262e0b483d5fa2aa3fa5af8

PIV_Stats.m (15 kB)
MD5: 71bdbf2ead021c0c36cb714ad770efb0

PIVdiaden.m (17 kB)
MD5: a0be7e005aed8f9af2b8e7e733298eba

PIVdiadenGUI.fig (15 kB)
MD5: 270b55c2eb9b20c19faaf7e82df985fc

PIVdiadenGUI.m (31 kB)
MD5: ccf441ee881703d2d39ae9a68fd90a77

PIVuncertainty_TransientDriver2.m (3 kB)
MD5: 70b89fc3ced7dfe57db4592d3c6bf8d7

PIVuncertaintyCode.m (90 kB)
MD5: 39bcf3c90104a7989eaa5ee759eba301

PIVuncertaintyGUI.fig (23 kB)
MD5: c043ac2fb793793ae8eef90349f6b215

PIVuncertaintyGUI.m (53 kB)
MD5: e1ed3d8ca0413b582b961bb321e53ccf

Plot_Uncertainties.m (1 kB)
MD5: 35d29cbe066996aa96ba76b3d59f650a

PlotVelocityInletContour_2.m (1 kB)
MD5: f626d6d2edc2654e1e892f39ebab2c98

SIG_parallel_New_4x32x32_75%_Round_2.m (25 kB)
MD5: be8902476251e3e6945e9c7d9fa32869

sort_nat.m (2 kB)
MD5: 8ae1a3798a9afcc1a3c4f9cde0a26ddd

SteadySRQ_Plots_2_8.m (32 kB)
MD5: 8989445a6677f85471ed8fc49c2fe9eb

SteadySRQ_Plots_HeatFlux_2_3.m (6 kB)
MD5: 8a93972a54301474d9b34ded6e06813f

SteadySRQ_Plots_HeatFlux_TC_Probe.m (6 kB)
MD5: 4e9d283d98fec8a22fee755b7bb8fb4b

subtightplot.m (3 kB)
MD5: 1dc7b1b71459a0dff0c5afd74520caad

surfaceViewer.m (25 kB)
MD5: b1e790b0904b1aad5e1768b301039d69

TempProfileAnalysis_y0_yPlusMax_loop_2_3.m (16 kB)
MD5: 36cab95f1c29b977b5971e892ca4e7f5

TemptoStar.m (2 kB)
MD5: 92b1465c8260669df0cc2ab4acba7c6f

tightfig.m (3 kB)
MD5: 92b1465c8260669df0cc2ab4acba7c6f

tightfig2_1.m (4 kB)
MD5: cd7914982da2c81470616af4f8cdc46e

ToStarInterpolator_Transient_5_3.m (20 kB)
MD5: 045d2cebe8d98b899c22b7510f05d71f

ToStarInterpolator4_4.m (17 kB)
MD5: a3bdcb63c2ac8066e104f587c07bf412

Transient_OutlierDetection.m (1 kB)
MD5: 98092816afd2c577b90bfafb8801b877

TransientCFD_GCI.m (15 kB)
MD5: bf51c7932d56acdf09a64974cab70d1d

TransientImageOrganization_2_3.m (6 kB)
MD5: 170bcb6177673d6e0f2ace7442d6de55

TransientSRQ_Plots_2_8.m (47 kB)
MD5: 0ce6c7841e93f38ef6bfc6ef39ddc66e

TrimToMask.m (2 kB)
MD5: 9ce81c474bcb8591614a78c8a50476e3

uigetfile_n_dir.m (1 kB)
MD5: c51fdc8dae264c5032de0053e93affc4

Uncertainty_4x32x32_75%_Round_PostProc_2.xml (58 kB)
MD5: 61efc9f8185235400b6290cff69e10ac

Uncertainty_4x32x32_75%_Round_PostProc_2_Used.mat (44 kB)
MD5: c25bd4660b2efbcea7baa83ccff69fe5

392636_supp_893C467A-817F-11E5-AD7B-B0FA94EF0FC5.zip (13053 kB)
MD5: 41ae3e41c4b0c5566271e48513f92ac4

392636_supp_A161BA0A-817F-11E5-8A4F-D4FA94EF0FC5.zip (248 kB)
MD5: dfaa768eaa7490ea8d8fa6860a4b388a