Document Type


Journal/Book Title/Conference







D. P. C. Peters

Publication Date


First Page


Last Page



Understanding and predicting the effects of deer (Cervidae) on forest ecosystems present significant challenges in ecosystem ecology. Deer herbivory can cause large changes in the biomass and species composition of forest understory plant communities, including early life-cycle trees (i.e., seedlings and saplings). Such changes can impact juvenile to adult transitions and the future age structure and species composition of mature forests. Changes to understory vegetation also impact flow of energy and nutrients in forest ecosystems. Studies examining the influence of deer on mature trees, however, are rare and rely on extrapolating effects from early life cycle stages of trees. We tested the hypothesis that the absence of deer would result in an increase in the growth rate of mature trees by examining the impact of white-tailed deer (Odocoileus virginianus) on mature canopy trees. We examined incremental growth in individuals of Quercus rubra, an important component of temperate deciduous forests in North America, inside and outside 16-year deer exclosures in eastern U.S. deciduous forests. We found that adult trees inside exclosures grew less than those directly exposed to deer. Our findings highlight the indirect effects of white-tailed deer on the growth of adult individuals of Q. rubra in a way opposite of what would be expected from previous studies based on immature or understory tree populations. We suggest the increased growth of adult trees in the presence of deer may be explained by increased nutrient inputs through deer fecal and urine deposits and the alteration of the competitive environment belowground through the reduction of understory vegetation by browsing. Underscoring the ecological and demographic importance of adult trees in forest ecosystems, results from this study suggest the direct and indirect effects of deer on mature trees should not be overlooked.


Article 84

Included in

Biology Commons