Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance

Document Type


Journal/Book Title/Conference

Journal of Invertebrate Pathology





Publication Date


First Page


Last Page



Conidial pigmentation is involved in protection against heat and UV radiation in several fungal species. In this study, we compare the tolerance of 17 color mutants of wild-type ARSEF 23 plus 13 color mutants of wild-type ARSEF 2575 of Metarhizium anisopliae var. anisopliae to wet-heat and UV-B or simulated-solar radiation. The stress tolerance of each mutant was compared with that of its wild-type parent, and with the most thermo- and UV-tolerant wild-type Metarhizium we have tested to date, M. anisopliae var. acridum (ARSEF 324). The color of each isolate or mutant was identified with the PANTONE Color Standard book [Eiseman, L., Herbert, L., 1990. The PANTONE® Book of Color: over 1000 color standards: color basics and guidelines for design, fashion, furnishing… and more. Harry N. Abrams, Inc., Publishers, New York]. In addition, the pigments of each mutant or wild-type were extracted and the UV absorbances of the extracts compared to the stress tolerance of those isolates; but no relationships were detected. Color mutants of ARSEF 23, in general, were less UV tolerant than their parent wild-type. With ARSEF 23 and its mutants, conidial pigmentation was important to conidial tolerance to UV-B and simulated-solar radiation; but color had less impact on ARSEF 2575 and its mutants. The ARSEF 2575 color mutants were less variable in UV tolerance than those of ARSEF 23, even though very similar colors occurred in the two groups of mutants. When color mutants of ARSEF 23 reverted to wild-type color they recovered wild-type levels of UV tolerance. Results of UV-B and UV-A exposures of wild-types ARSEF 23 and ARSEF 2575 conidia indicated that they are equally tolerant of UV-A, but differ in UV-B-response. For thermotolerance, several mutants were more heat tolerant than their wild-type parents. Accordingly, darker pigmentation of wild-type isolates was not important to protection against heat.

This document is currently not available here.