Urban particulate matter activates Akt in human lung cells

Document Type


Journal/Book Title/Conference

Archives of Toxicology


Springer Verlag

Publication Date



The normally picturesque Cache Valley in northern Utah is frequently reported to have the worst particulate (PM) air pollution in the United States. Numerous epidemiological studies conducted elsewhere have associated PM exposure to a variety of cardiovascular diseases and early mortality. We have previously shown that Cache Valley PM (CVPM) is pro-inflammatory, through a variety of mechanisms involving the release of inflammatory cytokines, unfolded protein response, ER stress, and C-reactive protein (CRP). This study was undertaken to determine whether Cache Valley PM (CVPM) would activate Akt, an upstream mechanism common to these events. Human lung (BEAS-2B) cells were treated with either fine (PM2.5) or coarse (PM10) particles (12.5 and 25 μg/ml) for periods up to 24 h. PM-exposed cells exhibited Akt activation as evidenced by phosphorylation at Thr308 and Ser473. Events downstream of Akt activation such as NF-κB activation were observed at 1 and 24 h, but IκB phosphorylation occurred only at 24 h, indicating that mechanisms of PM-mediated NF-κB activation are time dependent. Akt and NF-κB related inflammatory cytokine IL-1α, and IL-6 and the chemokine IL-8 were upregulated in treated cells at 6 and 24 h. The calpain inhibitor leupeptin limited Akt phosphorylation to Ser473 and reduced release of IL-1α, IL-6, and IL-8, indicating that calpain or similar protease(s) are involved in PM-induced activation of Akt and subsequent release of inflammatory cytokines. Our data indicate that PM activates Akt, which may play a role in the pro-inflammatory response to PM exposure.

This document is currently not available here.