Isotope Effects and Medium Effects on SulfurylTransfer Reactions

Document Type


Journal/Book Title

Journal of the American Chemical Society

Publication Date




First Page


Last Page



Kinetic isotope effects and medium effects have been measured for sulfuryl-transfer reactions of the sulfate ester p-nitrophenyl sulfate (pNPS). The results are compared to those from previous studies of phosphoryl transfer, a reaction with mechanistic similarities. The N-15 and the bridge O-18 isotope effects for the reaction of the pNPS anion are very similar to those of the p-nitrophenyl phosphate (pNPP) dianion. This indicates that in the transition states for both reactions the leaving group bears nearly a full negative charge resulting from a large degree of bond cleavage to the leaving group. The nonbridge O-18 isotope effects support the notion that the sulfuryl group resembles SO3 in the transition state. The reaction of the neutral pNPS species in acid solution is mechanistically similar to the reaction of the pNPP monoanion. In both cases proton transfer from a nonbridge oxygen atom to the leaving group is largely complete in the transition state. Despite their mechanistic similarities, the phosphoryl- and sulfuryl-transfer reactions differ markedly in their response to medium effects. Increasing proportions of the aprotic solvent DMSO to aqueous solutions of pNPP cause dramatic rate accelerations of up to 6 orders of magnitude, but only a 50-fold rate increase is observed for pNPS. Similarly, phosphoryl transfer from the pNPP dianion to tert-amyl alcohol is 9000-fold faster than the aqueous reaction, while the sulfuryl transfer from the pNPS anion is some 40-fold slower. The enthalpic and entropic contributions to these differing medium effects have been measured and compared.

This document is currently not available here.