Document Type

Article

Journal/Book Title

Energy and Environmental Science

Publication Date

6-2016

Volume

9

First Page

2550

DOI

10.1039/c6ee01432a

Abstract

notrogenase is the only enzyme known to catalyze the reduction of N2 to 2NH3. In vivo, the MoFe protein component of nitrogenase is exclusively reduced by the ATP-hydrolyzing Fe protein in a series of transient association/dissociation steps that are linked to the hyderolysis of two ATP for each electron transeferred. We report MoFe protein immobilized at an electrode surface, where cobaltocene (as an electron mediator that can be observed in real time at a carbon electrode) is used to reduce the MoFe protein (independent of the Fe protein and of ATP hydrolysis) and support the bioelectrocatalytic reduction of protons to dihydrogen, azide to ammonia, and nitrit to ammonia. Bulk bioelectrosynthetic N3 or NO2 reduction (50 mM) for 30 minutes yielded 70 +- 9 nmol NH3 and 234 +- 62 nmol NH3, with NO2 reduction operating at high faradaic efficiency.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.